
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2016-008
2016/02/10

CMS-SUS-14-007

Search for supersymmetry in pp collisions at
√

s = 8 TeV in
final states with boosted W bosons and b jets using razor

variables

The CMS Collaboration∗

Abstract

A search for supersymmetry in hadronic final states with highly boosted W bosons
and b jets is presented, focusing on compressed scenarios. The search is performed
using proton-proton collision data at a center-of-mass energy of 8 TeV, collected by the
CMS experiment at the LHC, corresponding to an integrated luminosity of 19.7 fb−1.
Events containing candidates for hadronic decays of boosted W bosons are identi-
fied using jet substructure techniques, and are analyzed using the razor variables MR
and R2, which characterize a possible signal as a peak on a smoothly falling back-
ground. The observed event yields in the signal regions are found to be consistent
with the expected contributions from standard model processes, which are predicted
using control samples in the data. The results are interpreted in terms of gluino pair
production followed by their exclusive decay into top squarks and top quarks. The
analysis excludes gluino masses up to 1.1 TeV for light top squarks decaying solely to
a charm quark and a neutralino, and up to 700 GeV for heavier top squarks decaying
solely to a top quark and a neutralino.
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1 Introduction
The CERN LHC has provided sufficient data to probe a large variety of theories beyond the
standard model (SM). Among these, theories based on supersymmetry (SUSY) [1–9], which
predict the existence of a spectrum of supersymmetric partners to the SM particles, are strongly
motivated. Scenarios with nondegenerate supersymmetric particle spectra, with cross sections
as low as ≈1 fb, have been explored in many final states; however, as yet no evidence for SUSY
has been found.

The focus of many current searches is so-called natural SUSY [10, 11] in which the Higgs boson
mass can be stabilized without excessive fine tuning. In natural SUSY scenarios, the Higgsino
mass parameter µ is required to be of the order of 100 GeV, and the lightest top squark t̃1, the
gluino g̃, and the lightest bottom squark b̃1 are constrained to have masses around the TeV
scale, while the masses of the other superpartners are unconstrained and can be much heavier
and beyond the LHC reach. The possibility that the top squark could be light has motivated
several searches by the ATLAS and CMS collaborations [12–23] for this sparticle. In general, the
sensitivity of these searches diminishes for direct top squark production when the mass of the
top squark approaches that of the lightest supersymmetric particle (LSP), which is assumed
to be the lightest neutralino χ̃0

1. For searches that specifically target the decay t̃1 → tχ̃0
1, the

sensitivity is reduced when the mass difference ∆m between the top squark and the LSP is
comparable to the top quark mass mt.

Here, we focus on two types of scenarios: the so-called compressed spectrum in which ∆m is
very small, of order a few GeV to tens of GeV (e.g. [24–26]), and scenarios where ∆m ≈ mt.
In the compressed case, the top squark decays to the LSP and soft decay products, which are
difficult to detect. When ∆m ≈ mt, the signature of top squark production is very similar to
that of tt production, which has a much higher cross section. Therefore, to be sensitive to such
processes, we cannot solely rely on the top squark decay products. Possibilities to discriminate
the signal are tagging the top squark events based on a jet from initial state radiation (ISR) using
the monojet signature [27, 28], or searching for top squark events in cascade decays of heavier
particles, such as the heavy top squark decays t̃2 → t̃1 + H/Z [21], or from gluino decays.

In this paper, we search for the challenging top squark final states described above in gluino
decays. Specifically, we consider gluino pair production where each gluino decays to a top
squark and a top quark. We consider the scenarios in which the gluino has a mass around 1 TeV
and the lighter top squark has a mass of a few hundred GeV. Because of the significant mass gap
between the gluino and the top squark, the top quark from the gluino decay will receive a large
boost. The top squark decays to cχ̃0

1 for small ∆m, or to tχ̃0
1 for ∆m ≈ mt, as in the targeted

searches for t̃1 → tχ̃0
1 mentioned above. The analysis described in this paper is especially

sensitive to the decay t̃1 → cχ̃0
1. Consequently, this analysis provides new information about

the viability of natural SUSY.

The gluino-pair production processes described above, with t̃1 → cχ̃0
1 or t̃1 → tχ̃0

1, can be
described using simplified model spectra [29–34]. Specifically, the models T1ttcc and T1t1t,
shown in Fig. 1, are used in the design of the analysis and in the interpretation of the results.

In light of the discussion above, it is expected that boosted top quarks are a promising sig-
nature of new physics involving a massive gluino decaying to a relatively light top squark.
Boosted objects with high transverse momentum, pT, are characterized by merged decay prod-
ucts separated by ∆R ≈ 2m/pT, where m denotes the mass of the decaying particle. For the
top quark decay products to be merged within the typical jet size of ∆R = 0.5 requires a top
quark momentum of≈700 GeV, a value difficult to reach with proton-proton collisions at 8 TeV.
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Figure 1: Diagrams for the T1ttcc (left) and T1t1t (right) simplified model spectra. Here, an
asterisk (∗) denotes an antiparticle of a supersymmetric partner.

Therefore, in order to increase the signal efficiency by entering the boosted regime, we focus
on W bosons from top quark decays, which require a more accessible pT around 300 GeV. The
targeted final state therefore contains boosted W bosons and jets originating from b quarks (b
jets) from top quark decays, light quark jets from unmerged hadronic W boson decay products
or charm quarks, and missing energy from the neutralinos. Hadronically decaying boosted W
boson candidates are identified using pruned jet mass [35–37] and a jet substructure observable
called N-subjettiness [38]. The razor kinematic variables MR and R2 [39] are used to discrim-
inate the processes with new heavy particles from SM processes in final states with jets and
missing transverse energy. To increase the sensitivity to new physics, we perform the analysis
by partitioning the (MR,R2) plane into multiple bins.

This paper is organized as follows. The razor variables are introduced in Section 2. Section 3
gives a brief overview of the CMS detector, while Section 4 covers the triggers, data sets,
and Monte Carlo (MC) simulated samples used in this analysis. Details of the object defini-
tions and event selection are given in Sections 5 and 6, respectively. Section 7 describes the
data/simulation scale factors that are needed to correct the modeling of the boosted W boson
tagger. The statistical analysis is explained in Section 8, and Section 9 covers the systematic
uncertainties. Finally, our results and their interpretation are presented in Section 10, followed
by a summary in Section 11.

2 Razor variables
The razor variables MR and R2 [39] are useful for describing a signal arising from pair pro-
duction of heavy particles, each of which decays to a massless visible particle and a massive
invisible particle. In the two-dimensional razor plane, a signal with heavy particles is expected
to appear as a peak on top of smoothly falling SM backgrounds, which can be empirically
described using exponential functions. For this reason, the razor variables are robust discrim-
inators for SUSY signals in which supersymmetric particles are pair-produced and decay to
SM particles and the LSP. For the simple case in which the final state comprises two visible
particles, e.g. jets, the razor variables are defined using the momenta ~p j1 and ~p j2 of the two jets
as

MR ≡
√
(|~p j1 |+ |~p j2 |)2 − (pj1

z + pj2
z )2 , (1)

MR
T ≡

√
Emiss

T (pj1
T + pj2

T)− ~pmiss
T ·(~p j1

T + ~p j2
T )

2
, (2)
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Figure 2: Distributions in the (MR,R2) space of the overall SM backgrounds and a T1ttcc sig-
nal with mg̃ = 1 TeV, mt̃ = 325 GeV and mχ̃0

1
= 300 GeV, both obtained from simulation. A very

loose selection is used: a good primary vertex and at least three jets, one of which is required
to have pT > 200 GeV.

where pj1,2
z are the z-components of the j1,2 momenta,~pmiss

T is the missing transverse momentum,
computed as the negative vector sum of the transverse momenta of all observed particles in the
event, and Emiss

T is its magnitude (see Section 5 for a more precise definition). Given MR and
the transverse quantity MR

T , the razor dimensionless ratio is defined as

R ≡ MR
T

MR
. (3)

If the heavy mother particle is denoted by G and the heavy invisible daughter particle is de-
noted by χ, the peak of the MR distribution and endpoint of the MR

T distribution are both
estimates of the quantity (m2

G −m2
χ)/mG. When the decay chains are complicated, producing

multiple particles in the final state, the razor variables can still be meaningfully calculated by
reducing the final state to a two-“megajet” structure. The megajet algorithm aims to cluster
visible particles coming from the decays of the same heavy supersymmetric particle. The ra-
zor variables MR and R2 are computed using the four-momenta of the two megajets, where
the megajet four-momentum is the sum of the four-momenta of the particles comprising the
megajet. Studies show that, of all the possible clusterings, the one that minimizes the sum of
the squared invariant masses of the megajets maximizes the efficiency with which particles are
matched to their heavy supersymmetric particle ancestor [40].

Figure 2 shows the simulated distributions of the overall SM background and a T1ttcc signal
with mg̃ = 1 TeV, mt̃ = 325 GeV and mχ̃0

1
= 300 GeV in the (MR,R2) plane. The SM background,

which mainly arises from multijet production, is dominant at low values of R2, while the SUSY-
like signal peaks higher in the (MR,R2) plane (MR peaks around 900 GeV, which is the expected
value).

In order to be sensitive to low-Emiss
T scenarios (small ∆m), we use a lower R2 threshold than

that used in previous razor analyses [40–43]. To exploit the boosted phase space in which the
expected signal significance is greater than in the nonboosted phase space, we work at large
(m2

G−m2
χ)/mG and thus at high MR, allowing us to raise the MR threshold. This has the added

virtue of keeping the SM backgrounds at a manageable level.
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3 The CMS detector
A detailed description of the CMS detector, together with a definition of the coordinate system
used and the relevant kinematic variables, can be found elsewhere [44]. A characteristic feature
of the CMS detector is its superconducting solenoid magnet, of 6 m internal diameter, which
provides a field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead
tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter.
Muon detectors based on gas-ionization chambers are embedded in a steel flux-return yoke
located outside the solenoid. Events are collected by a two-layer trigger system, where the
first level is composed of custom hardware processors, and is followed by a software-based
high-level trigger.

The tracking system covers the pseudorapidity region |η| < 2.5, the muon detector |η| < 2.4,
and the calorimeters |η| < 3.0. Additionally, the forward region at 3 < |η| < 5 is covered
by steel and quartz fibre forward calorimeters. The near hermeticity of the detector permits
accurate measurement of the momentum balance in the transverse plane.

4 Trigger and event samples
This analysis is based on a sample of proton-proton collision data at

√
s = 8 TeV collected

by the CMS experiment in 2012 and corresponding to an integrated luminosity of 19.7 fb−1.
Events are selected using two triggers, requiring either the highest jet pT or the scalar sum HT
of jet transverse momenta to be above given thresholds. The jet pT threshold was 320 GeV (and
400 GeV for a brief data taking period corresponding to 1.8 fb−1), while the HT threshold was
650 GeV. The two trigger algorithms were based on a fast implementation of the particle-flow
(PF) reconstruction method [45, 46], which is described in Section 5.

To measure the efficiency of these triggers, samples with unbiased jet pT and HT distributions
are obtained using an independent set of triggers that require at least one electron or muon.
Figure 3 shows, on the left-hand side, the efficiency of the requirement that events satisfy at
least one of the two trigger conditions as well as the baseline selection described in Section 6,
in the (HT, leading jet pT) plane. The trigger is fully efficient for events with HT > 800 GeV.
In order to account for the lower efficiency of the regions with HT < 800 GeV, the measured
trigger efficiency over the (HT, leading jet pT) plane is applied as an event-by-event weight to
the simulated samples. The right-hand side of Fig. 3 shows the trigger efficiency across the
(MR, R2) plane for the total simulated background.

Simulated event samples are used to investigate the characteristics of the background and sig-
nal processes. Multijet, tt, W(→ `ν)+jets, Z/γ∗(→ ` ¯̀)+jets, and Z(→ νν)+jets events are gen-
erated using MADGRAPH 5.1.3.30 [47, 48] with CTEQ6L1 [49] parton distribution functions
(PDF), while WW, WZ, and ZZ events are generated using PYTHIA6.424 [50] with CTEQ6L1
PDFs. In what follows, W and Z bosons will be collectively referred to as V. Single top quark
events are generated using POWHEG 1.0 [51, 52] and CT10 PDFs [53]. The cross sections for
these SM processes are given in Table 2. The inclusive background processes are scaled to
the highest-order cross section calculation available, whereas leading-order cross sections are
used for W(→ `ν)+jets, Z/γ∗(→ ` ¯̀)+jets, and Z(→ νν)+jets, which are produced with vary-
ing generator-level HT requirements. The simplified model signals are produced using MAD-
GRAPH 5.1.5.4 using CTEQ6L1 PDFs. The signal cross sections are computed at next-to-leading
order with next-to-leading-log corrections using PROSPINO and NLL-FAST [54–59]. The parton-
level events are showered and hadronized using PYTHIA6.426 with tune Z2* [60], which is
derived from the Z1 tune [61]. The latter uses the CTEQ5L PDFs [62], whereas Z2* adopts
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Figure 3: (Left) The trigger efficiency, obtained from data, as a function of HT and leading jet pT
after the baseline selection discussed in Section 6. (Right) The trigger efficiency as a function
of MR and R2 after the same baseline selection, obtained by applying the trigger efficiency as a
function of HT and leading jet pT to the simulated background.

CTEQ6L. For the background events, the response of the CMS detector is simulated in detail
using a program (FULLSIM) based on GEANT4 [63]. A parameterized fast detector simulation
program (FASTSIM) is used to simulate the detector response for the signal events [64].

5 Event reconstruction
We select events that have at least one interaction vertex associated with at least four charged-
particle tracks. The vertex position is required to lie within 24 cm of the center of the CMS de-
tector along the beam direction and within 2 cm from the center in the plane transverse to the
beam. Because of the high instantaneous luminosity of the LHC, hard scattering events are typ-
ically accompanied by overlapping events from multiple proton-proton interactions (pileup),
and therefore contain multiple vertices. We identify the primary vertex, i.e., the vertex of the
hard scatter, as the one with the highest value of the ∑ p2

T of the associated tracks. Detector-
and beam-related filters are used to discard events with anomalous noise that mimic events
with high energy and large imbalance in transverse momentum [65, 66].

CMS reconstructs events using the PF algorithm, in which candidate particles (PF candidates)
are formed by combining information from the inner tracker, the calorimeters, and the muon
system. Each PF candidate is assigned to one of five object categories: muons, electrons, pho-
tons, charged hadrons, and neutral hadrons. Contamination from pileup events is reduced
by discarding charged PF candidates that are incompatible with having originated from the
primary vertex [67]. The average pileup energy associated with neutral hadrons is computed
event-by-event and subtracted from the jet energy and from the energy used when computing
lepton isolation, i.e., a measure of the activity around the lepton. The energy subtracted is the
average pileup energy per unit area (in ∆η × ∆φ) times the jet or isolation cone area [68, 69].

Jets are clustered with FASTJET 3.0.1 [70] using the anti-kT algorithm [71] with distance param-
eter ∆R = 0.5. These jets are referred to as AK5 jets. Corrections are applied as a function of jet
pT and η to account for the residual effects of nonuniform detector response. The jet energies
are corrected so that, on average, they match those of simulated particle-level jets [72]. After
correction, jets are required to have pT > 30 GeV and |η| < 2.4. We use the combined secondary
vertex algorithm [73, 74] to identify jets arising from b quarks. The medium tagging criterion,
which yields a misidentification rate for light quark and gluon jets of ≈1% and a typical effi-
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ciency of ≈70%, is used to select b jets. The loose tagging criterion, with a misidentification
rate of ≈10% and efficiency of ≈85%, is used to reject events containing b jets.

To identify boosted W bosons, we follow a similar procedure as outlined in Ref. [75]. Jets are
clustered with FASTJET using the Cambridge-Aachen algorithm [76] and a distance parameter
of 0.8, yielding CA8 jets. Jet energy corrections for these jets are derived from the anti-kT jets
with distance parameter ∆R = 0.7. Simulations show that the corrections are valid for CA8 jets
and have an additional uncertainty ≤ 2%.

The jet mass is calculated from the constituents of the jet after jet pruning, which removes
the softest constituents of the jet. During jet pruning, the jet constituents are reclustered, and
at each step the softer and larger-angle “protojet” of the two protojets to be merged is re-
moved should it fail certain criteria [35, 36]. A CMS study has shown that jet pruning reduces
pileup effects and provides good discrimination between boosted W jets and quark/gluon
(q/g) jets [37]. We define mass-tagged jets (mW) as CA8 jets with pT > 200 GeV and jet mass
within the range 70 < mjet < 100 GeV around the W boson mass.

In addition to the jet mass, we also consider the N-subjettiness [38] variables, which are ob-
tained by first finding N candidate axes for subjets in a given CA8 jet, and then computing the
quantity

τN =
1

R0
∑

k
pT,k min(∆R1,k, ∆R2,k, ...∆RN,k)/ ∑

k
pT,k, (4)

where R0 is the original jet distance parameter and k runs over all constituent particles. The
subjet axes are obtained with FASTJET via exclusive kT clustering, followed by a one-pass op-
timization to minimize the N-subjettiness value. The quantity τN is small if the original jet
is consistent with having N or fewer subjets. Therefore, to discriminate boosted W bosons,
which have two subjets, from q/g jets characterized by a single subjet, we require that a W
boson mass-tagged jet satisfy τ2/τ1 < 0.5 for it to be classified as a W boson tagged jet (labeled
W in the following). The W boson tagging efficiency is dependent on the CA8 jet pT, and is
50–55% according to simulation. The corresponding misidentification rate is 3–5%. We also
define W boson anti-tagged jets (aW) as W boson mass-tagged jets that satisfy the complement
of the τ2/τ1 criterion, and use these jets to define control regions for data-driven background
modeling.

To calculate ~pmiss
T , which is used in the calculation of the razor variable R2 defined in Eqs. (2)

and (3), the vector sum over the transverse momenta is taken of all the PF candidates in an
event.

Loosely identified and isolated electrons [77] (and muons [78]) with pT > 5 GeV and |η| < 2.5
(2.4) are used both to suppress backgrounds in the signal region and in the definition of the
control regions. Tightly identified isolated leptons, electrons (muons) with pT > 10 GeV and
|η| < 2.5 (2.4), define a control region enriched in Z→ ` ¯̀ events, from which we estimate the
systematic uncertainty in the predicted number of Z→ νν events in the signal region. Electron
candidates that lie in the less well-instrumented transition region between the barrel and end-
cap calorimeters, 1.44 < |η| < 1.57, are rejected. We suppress background from events that
are likely to contain τ and other leptons that fail the loose selection by discarding events with
isolated tracks with pT > 10 GeV and track-primary vertex distance along the beam direction
|dz| < 0.05 cm.

Known differences between the properties of data and MC simulated data are corrected by
weighting simulated events with data/simulation scale factors for the jet energy scale, b tag,
W mass-tag, W tag and W anti-tag efficiency. The W tagging-related scale factors are described
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in Section 7. In addition, event-by-event weights are used to correct the simulated data so that
their pileup, trigger, top quark pT, and ISR characteristics match those of data.

6 Analysis strategy and event selection
We search for deviations from the SM in the (high-MR, high-R2) region using events with at
least one boosted W boson, at least one b-tagged jet and no isolated leptons or tracks. SM
backgrounds in the signal region S are estimated using observations in control regions and
scale factors, calculated from MC simulation, that relate the number of events in one region
to that in another. Three control regions, Q, T, and W, select high-purity samples of multijet,
tt, and W(→ `ν)+jets events, respectively. Details of the background estimation method are
given in Section 8.

Events must satisfy the following baseline selection:

1. have at least one good primary vertex (see Section 5);

2. pass all detector- and beam-related filters (see Section 5);

3. have at least three selected AK5 jets of which at least one has pT > 200 GeV, thereby
defining the boosted phase space; and

4. satisfy MR > 800 GeV and R2 > 0.08, where the megajets are constructed from the se-
lected AK5 jets.

The details of the event selection in addition to the baseline selection are given in Table 1. The
signal and control regions are defined using different requirements on the multiplicities of lep-
tons, b-tagged jets and W-tagged jets, and on kinematic variables that discriminate between
different processes. The multijet-enriched control sample Q is used for estimating the multijet
background in the S and T regions. To characterize Q, we use the fact that Emiss

T in multijet
events is largely due to jet mismeasurements rather than the escape of particles that interact
weakly with the detector; consequently, ~pmiss

T will often be aligned with one of the jets. There-
fore, a good discriminant between multijet events and events with genuine Emiss

T is

∆φmin = min
i

∆φ(~pmiss
T ,~pT i), (5)

that is, the minimum of the angles between ~pmiss
T and the transverse momentum of each jet,

where i runs over the three leading AK5 jets.

The T and W control regions are used to characterize the tt and W+jets backgrounds, respec-
tively, in the S region. The contamination in the S region from fully hadronic decays of tt pairs
is negligible because they do not produce sufficient genuine Emiss

T to satisfy our event selection.
The tt contamination consists thus of the semileptonic decays of tt pairs in which one W boson
is boosted and the other W boson decays to a charged lepton that is not identified. Therefore,
the T region is required to have a lepton from the decay of a W boson, at least one b-tagged
jet, and a W-tagged jet. Similarly, the W+jets contribution in the S region comes from leptonic
W boson decays in which the charged lepton is not identified and a jet is misidentified as a W
jet. Therefore, we require the W region to have events with a lepton from the W boson and a
mass-tagged boosted W jet, which is a quark or gluon initiated jet misidentified as a boosted
W boson. The N-subjettiness criterion is not imposed in order to maintain high event yields in
these control regions and therefore higher statistical precision.
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Table 1: Summary of the selections used, in addition to the baseline selection, to define the
signal region (S), the three control regions (Q, T, W), and the two regions (S′, Q′) used for the
cross-checks described later in the text.

Selection S S′ Q Q′ T W
Number of b-tagged jets ≥1 ≥1 0 0 ≥1 0
Number of mass-tagged Ws ≥1 ≥1 ≥1 ≥1 ≥1 ≥1
Number of tagged Ws ≥1 ≥1 — — ≥1 —
Number of anti-tagged Ws — — ≥1 ≥1 — —
Number of loose leptons 0 0 0 0 1 1
Number of isolated tracks 0 0 0 0 — —
mT (GeV) — — — — <100 30–100
∆φmin >0.5 <0.5 <0.3 >0.5 >0.5 >0.5

In the T and W regions, we suppress potential signals using the transverse mass,

mT =
√

2p`TEmiss
T (1− cos ∆φ), (6)

where ∆φ is the difference in azimuthal angle between the lepton ~pT and ~pmiss
T , and p`T is the

magnitude of the lepton ~pT. The mT distribution exhibits a kinematic edge at the mass of
the W boson for tt and W(→`ν)+jets processes. However, such an edge is not present for
signal events because of the extra contribution to Emiss

T from neutralinos, which escape direct
detection. Therefore, potential signals are suppressed in the T and W regions by requiring mT <
100 GeV. For the W region, we additionally require mT > 30 GeV in order to reduce residual
contamination from multijet events, which are expected to have small Emiss

T and therefore small
mT. Table 1 lists two additional control regions, S′ and Q′, which are used in the cross-checks
described later in this section.

Figure 4 shows the simulated distributions in the signal region for the MR and R2 variables,
where the smoothly falling nature of the backgrounds, as well as their relative contributions,
can be observed. The mT distribution in the T and W regions prior to the mT and ∆φmin selection
is shown in Fig. 5, while Fig. 6 shows the ∆φmin distribution in the Q region, both for data and
simulated backgrounds. Overall, there is reasonable agreement between the observed and
simulated yields. The discrepancies are accommodated by the systematic uncertainties we
assign to the simulated yields.

In Table 2, we show the expected number of events obtained from simulation for the different
background processes and for the example T1ttcc model with mg̃ = 1 TeV, mt̃ = 325 GeV and
mχ̃0

1
= 300 GeV. The observed event counts after different levels of selection, beyond the trigger

requirement, are also reported. The background composition in percent after the baseline, S,
Q, T, and W region selections is reported in Table 3. The signal region is tt dominated, with
additional contributions from W(→ `ν)+jets and multijet processes. Each control region, Q,
T, and W, has high purity for the background process it targets, 90% multijet, 83% tt and
single top quark processes, and 85% W(→ `ν)+jets, respectively. The discrepancies between
the observations and the simulation are due to uncertainties in the MC modeling, especially for
the multijet processes.

We do not explicitly estimate the background in the signal region. Rather, from the obser-
vations in the control regions, we create a prior distribution (described in Section 8) for the
four background components of the signal region that incorporates all statistical and system-
atic uncertainties. However, in order to verify that the control regions in data provide adequate
models for backgrounds in the signal region and that the translations between different regions
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Figure 5: Distributions of mT for data and simulated backgrounds, in the T (left) and W
(right) control regions, without applying any selection on mT and ∆φmin. The contribution
from an example signal corresponding to the T1ttcc model with mg̃ = 1 TeV, mt̃ = 325 GeV and
mχ̃0

1
= 300 GeV, is stacked on top of the background processes. Only statistical uncertainties are

shown.

behave as expected, we perform two cross-checks, taking into account statistical uncertainties
only.

In the first cross-check, we predict the background in a signal-like control region, and compare
these predictions with the observations in that region. This control region, denoted by S′, is
defined by inverting the ∆φmin requirement while preserving the rest of the signal selection.
The estimated number of events in the S′ region for the multijet, W(→ `ν)+jets, and top quark
processes is computed as follows,

N̂S′
QCD =

(
NQ

obs − NQ
other,MC

)
/

(
NQ

QCD

NS′
QCD

)
MC

, (7)

N̂S′
W(→`ν) =

(
NW

obs − NW
other,MC

)
/

(
NW

W(→`ν)

NS′
W(→`ν)

)
MC

, (8)
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Figure 6: Distributions of ∆φmin for data and simulated backgrounds in the Q region without
applying a selection on ∆φmin. Only statistical uncertainties are shown. Signal contamination
in this control region is negligible.

Table 3: Background composition according to simulation after the baseline, S, Q, T, W, Q′ and
S′ region selections. “Other” refers to the sum of the small background components Z/γ∗→ ` ¯̀,
triboson, and ttV.

Selection
Multijet tt W(→ `ν) Diboson Single top Z(→ νν) Other

(%) (%) (%) (%) (%) (%) (%)
Baseline 62.8 10.2 18.7 0.5 1.6 4.6 1.6
S 9.2 56.3 14.4 2.3 7.3 7.9 2.6
Q 90.2 0.7 5.8 0.2 0.2 2.4 0.3
T 0.0 73.9 13.3 1.3 8.8 0.0 2.7
W 0.0 10.3 84.8 2.4 1.1 0.4 1.0
Q′ 12.3 2.8 36.8 1.7 1.0 45.0 0.4
S′ 69.5 20.3 2.8 0.4 3.8 0.8 2.4

N̂S′
TTJ+T =

(
NT

obs − N̂T
QCD − NT

other,MC

)
/

(
NT

TTJ+T

NS′
TTJ+T

)
MC

, (9)

while the estimated number of multijet events in the control region T is given by

N̂T
QCD =

(
NQ

obs − NQ
other,MC

)
/

(
NQ

QCD

NT
QCD

)
MC

. (10)

In Eqs. (7)–(10), the superscripts denote one of the control regions, while the subscripts “other”,
“W(→ `ν)”, “TTJ + T”, and “QCD”, denote the sum of the small backgrounds, W(→ `ν)+jets,
tt plus single top quark, and multijet, respectively, while “obs” labels observed counts. These
equations are used only in this cross-check. However, they incorporate the same relations
between signal and control regions as will be used in the likelihood procedure described in
Section 8. As can be seen from Table 3, the nominal choice of the parameters associated with
systematic uncertainties leads to NT

QCD,MC = 0. The total estimated background in S′ is

N̂S′ = ∑
i

N̂S′
i , (11)

where i runs over all background processes. For smaller backgrounds, N̂S′
i is determined by

simulation. Backgrounds are estimated bin-by-bin in the (MR, R2) space, where the bin bound-
aries are numerically defined in Table 5. However, the estimated scale factors are global as the
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Figure 7: One-dimensional projection of MR (left) and R2 (right) for the cross-check predicting
the ∆φmin sideband region S′. The estimates for the three different background processes are
stacked on top of each other. The uncertainties shown are statistical only. The horizontal error
bars indicate the bin width.

statistical precision is not sufficient to yield reliable bin-by-bin estimates. The expected global
scale factors, which we denote by κ, are defined in Section 8, which also describes how they are
calculated.

Figure 7 shows the projection on the MR and R2 axes of the predicted and observed distribu-
tions in the S′ region. The prediction agrees with observation within≈20%. This cross-check of
the background modeling shows that it is feasible to estimate a multicomponent background
in a signal-like region using the control regions we have defined.

In the second cross-check, we use the Q region to estimate the background in a signal-like Q
region, denoted by Q′, for which ∆φmin > 0.5, from the relationship

N̂Q′ = NQ
obs

NQ′
MC

NQ
MC

. (12)

Here NMC includes all contributing background processes, and NQ
obs is the observed count in

the Q region. This test assesses the degree to which the simulated distribution of ∆φmin as well
as its extrapolation from the Q region to the S region are reliable. As observed from Table 3,
the multijet process is only a small contribution in the Q′ region. Therefore, this cross-check
assesses how well the reduction of the multijet process, via the ∆φmin > 0.5 requirement, is
modeled. The comparison between prediction and observation can be made from data shown
in Fig. 8. The level of discrepancy between the prediction and observation in this cross-check
is incorporated as a systematic uncertainty of 42% in the global scale factor for the multijet
component, as described in Section 8.

7 The W boson tagging scale factors
The W boson tagger used in this analysis is the same as that defined and used in previous CMS
analyses [75, 79]. Since the W boson tagging efficiency does not depend significantly on the
event topology, we use the same scale factor [75]

SFWtag = 0.86± 0.07, (13)

as used in these previous analyses, for correcting the modeling differences between FULLSIM

and data for the W boson tagging efficiency and apply the scale factor to processes with genuine
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Figure 8: One-dimensional projection of MR (left) and R2 (right) for the cross-check predicting
the background in region Q′ defined by ∆φmin > 0.5. The uncertainties shown are statistical
only. The horizontal error bars indicate the bin width.

hadronically decaying W bosons (mainly tt and signal) in the S and T regions.

On the other hand, the data/FULLSIM scale factors for the misidentification (mistag) efficiency
for mass-tagged, anti-tagged, and tagged W bosons are derived specifically for this analysis.
The mistag efficiency is defined as the probability to tag, with one of the W taggers, a jet not
originating from the hadronic decay of a W boson. Scale factors are necessary to correct the
mistag efficiencies for W boson mass-tagging and anti-tagging in the MC simulation of the
Q and W control regions, respectively, whereas the mistag efficiency scale factor for W bo-
son tagging is used to correct simulated events with misidentified W bosons, e.g. multijet or
W(→ `ν)+jets events, in the S and T regions. All three mistag efficiency scale factors are de-
rived using the same multijet-enriched control region, defined as region Q with the exception
of all selection related to razor variables and W tagging. To obtain the mistag efficiencies εf for
W boson tagging, mass-tagging and anti-tagging, we use the leading CA8 jet in each event and
measure the fraction of these jets passing the given tagger. After obtaining εf in both data and
FULLSIM, we compute the scale factor,

SF(pT) =
εdata

f (pT)

εFULLSIM
f (pT)

. (14)

The scale factors for the W boson tagging, mass-tagging and anti-tagging mistag efficiency
vary between 1.0–1.2, 1.1–1.4, and 1.2–1.5, respectively, depending on the CA8 jet pT. The
uncertainties in the scale factor include the statistical uncertainty as well as the trigger efficiency
and jet energy scale uncertainties, and vary between 2–7% depending on the CA8 jet pT.

Because the signal processes are simulated with FASTSIM, the resulting tagging efficiencies
must be corrected for modeling differences between the programs FASTSIM and FULLSIM. To
compute the W boson tagging efficiency FULLSIM/FASTSIM scale factor we use a sample of
tt events simulated with FULLSIM and FASTSIM. We first determine the W boson tagging
efficiency for both samples, considering only events with exactly one hadronically decaying W
boson at the generator level for which the closest reconstructed CA8 jet lies within ∆R = 0.8
of the W boson. Since we wish to select boosted W bosons, and not boosted top quarks, we
require that there be no (generator-level) b quark from the top quark decay within the cone
of the closest CA8 jet. The W boson tagging efficiency as a function of pT for a given sample
is then obtained by dividing the pT distribution of the closest CA8 jets that also satisfy the
tagging condition (70 < mjet < 100 GeV and τ2/τ1 < 0.5) by the pT distribution of all closest
CA8 jets. To determine the FULLSIM/FASTSIM scale factor for the W boson tagging efficiency,
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we divide the efficiencies ε obtained from the FULLSIM and FASTSIM samples, SFFull/Fast(pT) =
εFULLSIM(pT)/εFASTSIM(pT). This scale factor is applied to all signal samples and varies between
0.89–0.95, depending on the pT of the given CA8 jet, with an uncertainty of less than 3%.

8 Statistical analysis
The statistical analysis of the observations in the signal region is based on a likelihood function,
L(σ), given by

L(σ) =
∫

dL
∫

d~θ1 · · ·
∫

d~θM

[
M

∏
i=1

p(NS
i |σ,L,~θi)

]
π(~θ1, · · · ,~θM)π(L), (15)

where σ is the total signal cross section, M = 25 is the number of bins in the (MR, R2) plane,
NS

i is the observed count in bin i of the signal region, and the bin-by-bin parameters ε, bS
QCD,

bS
TTJ, bS

W(→`ν)
, and bS

other are denoted collectively by ~θ. The parameter ε represents the M sig-
nal efficiencies (including acceptance) for a given signal model, while the bin-by-bin back-
ground parameters for a given background process in the S region are denoted by bS

process.
The function π(L) is the integrated luminosity prior and π(~θ1, · · · ,~θM) is an evidence-based
prior constructed from observations in the control regions and the four global scale factors
κA/B

process = ∑i bA
process,MC,i/ ∑i bB

process,MC,i, where the sum is over all bins of the simulated data; A
and B denote any of the S, Q, T, or W regions.

The association of the global scale factors with the control regions is shown in Fig. 9, which
also shows which control regions provide constraints on the background parameters, bS

process.
Although we use the same global scale factors in each bin, shape uncertainties in the sim-
ulated distributions are accounted for by allowing the uncertainty in the scale factors to be
bin-dependent. The 25 signal bins in the (MR, R2) plane are divided into three sets for which
different uncertainties are applied: the four bins nearest the origin (set 1), the five surrounding
bins (set 2), and the remaining bins (set 3). The likelihood per bin is taken to be p(NS|σ,L,~θ) =
Poisson(NS, εσL+ bS

QCD + bS
TTJ + bS

W(→`ν)
+ bS

other).

The integral in Eq. (15) is approximated using MC integration by sampling the priors π(L),
and π(~θ1, · · · ,~θM) and averaging the multibin likelihood with respect to the sampled points
{(L,~θ1, · · · ,~θM)}. The priors for the expected integrated luminosity L, signal efficiencies ε,
and simulated background counts bregion

process,MC are modeled with gamma function densities,

Ga(x, γ, β) = β−1(x/β)γ−1 exp(−x/β)/Γ(γ), (16)

in which the mode is set to c and the variance to δc2, where c± δc denotes either the measured
integrated luminosity, or for a given bin of a given region and process, the simulated signal
efficiency, or the simulated background count. From c ± δc, we calculate the gamma density
parameters,

γ = [(k + 2) +
√
(k + 2)2 − 4]/2, (17)

β = [
√

c2 + 4δc2 − c]/2, (18)

where k = (c/δc)2. For empty bins, we set γ = 1 and the bin value is constrained to zero by
setting the β parameter to 10−4.
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Figure 9: Graphical representation of the analysis method. The circles represent the signal
(S) and control (Q, T, W) regions, with their definition summarized in the associated boxes.
Listed inside each circle are the likelihood parameters relevant to that region: the bin-by-bin
background parameters bregion

process for the given region and background process, as well as the
global scale factors κA/B

process = ∑i bA
process,MC,i/ ∑i bB

process,MC,i, where the sum is over all bins of
the simulated data. A connection between two regions indicates that one or more parameters
are shared. The total expected background, per (MR, R2) bin, is the sum of the terms shown
for each region. Furthermore, associated with each bin of each region is an observed count,
Nregion, a simulated count, Nregion

process,MC, and a count Nregion
other,MC equal to the sum of the smaller

backgrounds, Z/γ∗→ ` ¯̀+jets, diboson, triboson, and ttV, with associated parameter in the
likelihood bregion

other .
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For the signal efficiencies and backgrounds, the prior is modeled hierarchically,

π(~θ1, · · · ,~θM) =
∫

d~c1 · · ·
∫

d~cM

∫
d~φ

[
M

∏
i=1

π(~θi|~ci)

]
π(~c1, · · · ,~cM|~φ)π(~φ), (19)

where ~φ represents parameters that characterize the independent sources of systematic un-
certainty, described in Section 9. The integral in Eq. (19) is evaluated as follows: ~φ values
are sampled from π(~φ) following the procedure described in Section 9, then ~ci values from
π(~c1, · · · ,~cM|~φ), then ~θi values from π(~θi|~ci). The sampling from π(~φ) and π(~θi|~ci) is straight-
forward because the functional forms are known. However, the sampling of~ci requires running
the analysis multiple times, yielding an ensemble of histograms in the (MR, R2) plane, which is
the output of the procedure described in Section 9. Thereafter, the sampling, which yields the
points {(L,~θ, · · · ,~θM)}, proceeds as follows:

1. sample the integrated luminosity parameter;

2. sample the efficiency parameters, ε, for every bin and every signal model;

3. sample the background parameters bregion
process,MC for every bin and every background;

4. scale bQ
QCD,MC by a random number sampled from a gamma density of unit mode and

standard deviation 0.36 in order to induce the 42% uncertainty in the multijet global scale
factor κQ/S

QCD that accounts for deficiencies in the modeling of multijet production, as de-
rived from the second cross-check mentioned in Section 6;

5. compute the κ parameters from the appropriate background sums, for example, κQ/S
QCD =

∑i bQ
QCD,MC,i/ ∑ bS

QCD,MC,i;

6. scale each κ value by a random number sampled from a gamma density with unit mode
and standard deviation of either 0.5 or 1.0 for the bins in set 2 or set 3, respectively, to
account for the larger uncertainties in the tails of the simulated distributions, and

7. sample the background parameters bS
QCD, bS

TTJ, and bS
W(→`ν)

, from the Poisson models of

the control regions; for example, for region Q, Poisson(NQ, κQ/SbS
QCD + bQ

other) is mapped
to a posterior density in bS

QCD using a flat prior in bS
QCD, and bS

QCD is sampled from the
posterior density.

If no statistically significant signal is observed, we determine limits on the total signal cross
section using the CLs criterion [80–82] and the test statistic tσ = 2 ln[L(σ̂)/L(σ)] when 0 ≤ σ̂ ≤
σ, and tσ = 0 when σ̂ > σ. Large values of tσ indicate incompatibility between the best fit
hypothesis σ′ = σ̂ and the hypothesis σ′ = σ being tested. Given the p-values p0 = Pr(tσ >
tσ,obs|σ′ = 0) and pσ = Pr(tσ > tσ,obs|σ′ = σ), obtained by simulation, a 95% CLs upper limit
on the cross section is obtained by solving CLs(σ) = pσ/p0 = 0.05. The quantity tσ,obs denotes
the observed values of the test statistic, one for each hypothesis σ′ = σ.

9 Systematic uncertainties
The input to the statistical analysis is an ensemble of histograms in the (MR, R2) plane that
incorporate systematic uncertainties in the simulated signal and background samples. The in-
dependent systematic effects, described below, are sampled simultaneously. For each sampled
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systematic effect, a Gaussian variate with zero mean and unit variance is used in the calcula-
tion of the random shift due to the systematic effect for all the signal and background models.
Likewise, the same randomly sampled PDFs are used for all signal and background models.
In this way, the statistical dependencies among all bins of the signal and background models
are correctly, and automatically, modeled. The sampling of the systematic effects is repeated
several hundred times.

In all cases, except for those associated with PDFs, the systematic uncertainties are in the scale
factors (SF) applied to the simulated samples to correct them for modeling deficiencies. We
consider the systematic uncertainties in the following quantities:

• Jet energy scale: The uncertainties are dependent on jet pT and η [72].

• Parton distribution functions: We use 100 randomly sampled sets of PDFs from
NNPDF23 lo as 0130 qed [83], MSTW2008lo68cl [84], and CT10 [53]. The samples
for the latter two are generated using the program HESSIAN2REPLICAS, recently re-
leased with LHAPDF6 [85]. Given a sampled set i, for PDF set K and the PDF set O
with which the events were simulated, events are reweighted using the scale factors,
SFK,i = wK,i/wO, where the weights w are products of the event-by-event PDFs for
the colliding partons.

• Trigger efficiency: We take the uncertainty in each bin, as a function of HT and
leading jet pT, to be the maximum of the statistical uncertainty in the efficiency after
the baseline selection and the difference between the efficiencies before and after the
baseline selection.

• b tagging scale factors: The b tagging performance differs between data and sim-
ulation, and differs between FULLSIM and FASTSIM, which is used to model signal
processes. The simulated events are therefore corrected by applying jet flavor-, pT-,
and η-dependent data/FULLSIM and FULLSIM/FASTSIM scale factors on the b tag-
ging or mistagging efficiency. The uncertainties in these scale factors are also jet
flavor, pT, and η dependent, and are of the order of a few percent [74].

• W tagging scale factors: The W boson tag efficiency, and the mistag efficiency for
W boson tagging, W boson mass-tagging, and W boson anti-tagging differ between
data and simulation, as well as between FULLSIM and FASTSIM. Data/FULLSIM

and FULLSIM/FASTSIM scale factors, whose uncertainties are functions of jet pT, are
applied to the simulated samples.

• Lepton identification: For electrons, we use pT- and η-dependent scale factors for
the identification efficiency. The uncertainties are also pT and η dependent [77]. The
scale factor for the muon identification efficiency equals one and the corresponding
uncertainties are negligible [78].

• Initial-state radiation: Deficiencies in the modeling of ISR are corrected by reweight-
ing [19] the signal samples using an event weight that depends on the pT of the
recoiling system. The associated systematic uncertainty is equal to the difference
1− wISR, where wISR is the ISR event weight.

• Top quark transverse momentum: Differential top quark pair production cross sec-
tion analyses have shown that the shape of the pT spectrum of top quarks in data is
softer than predicted [86]. To account for this, we reweight events based on the pT
of the generator level t and t quarks in the tt simulation. The uncertainty associated
with this reweighting is taken to be equal to the full amount of the reweighting.

• Pileup: Simulated events are reweighted so that their vertex multiplicity distribu-
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tion matches that observed in data. The minimum-bias cross section is varied by
±5%, thereby changing the shape of the vertex multiplicity distribution and there-
fore the weights.

• Multijet spectrum: The cross-checks described in Section 6 showed that there is a
42% uncertainty in the multijet scale factor κ between the S and Q regions. This
uncertainty is incorporated by increasing the uncertainty in the κ parameter, as de-
scribed in Section 8.

• Z(→ νν)+jets prediction: About 8% of the background in the signal region is com-
posed of Z(→ νν)+jets events. Since we require the presence of at least one b-tagged
jet, and given the known deficiency in modeling Z production in association with
heavy flavor quarks, we include an extra systematic uncertainty in the Z(→ νν)+jets
contribution. This uncertainty is estimated using a data control region enriched in
Z(→ ` ¯̀)+jets, required to have exactly two tight leptons with same flavor (e or µ)
and opposite charge, 60 < m` ¯̀ < 120 GeV, at least one b-tagged jet, and at least
one W mass-tagged jet. We estimate the uncertainty by first computing bin-by-bin
data/simulation ratios in this control region. Then, we take the uncertainty in the
ratio in each bin as the standard deviation of a Gaussian density, normalized to the
number of events in that bin. Finally, the Gaussian densities from all bins are super-
posed, and the uncertainty is taken to be the magnitude of the 68% band around a
ratio of unity.

As noted above, all systematic effects are varied simultaneously across (MR, R2) bins. How-
ever, to assess the effect of each systematic uncertainty individually, each one is varied by one
standard deviation up and down. The effect on the background count and signal efficiency in
the signal region is shown in Table 4. The signal values are obtained from averaging over all
mass points in the T1ttcc model (∆m = 25 GeV) plane. The PDF systematic uncertainties are
obtained by running over 100 different members from the three PDF sets and fitting a Gaus-
sian function to the efficiency distribution. The last line in the table corresponds to the full
sampling of the systematic uncertainties. To obtain this value, we again fit a Gaussian function
to the efficiency distribution obtained from the full systematic sampling including 500 varia-
tions. Although the effects of some of these systematic uncertainties on the backgrounds are
large, they do not influence our results greatly because only the ratios of simulated background
counts enter the statistical analysis, not the absolute values. Therefore, most of the systematic
effects cancel. The statistical precision on the number of events in the control regions is the
leading uncertainty in the background prediction for the search bins at large MR or R2. The
dominant systematic uncertainty in the signal efficiency arises from the PDFs.

10 Results and interpretation
Our background predictions for each bin in the (MR, R2) plane are presented in Fig. 10 and
in Table 5, which also lists the observed event yield in each bin. The background predictions
are presented as the mean and standard deviation as determined from the background prior
π(θ) described in Section 8. The observed event yields are found to be in agreement with the
predicted backgrounds from SM processes. Consequently, no evidence of a signal is observed.

We interpret our results in terms of the simplified model spectra T1ttcc and T1t1t, whose di-
agrams are shown in Fig. 1. These models each have three mass parameters: the gluino, top
squark, and LSP masses. The mass of the gluino is varied between 600 and 1300 GeV and that
of the LSP between 1 and 500 GeV, while the mass difference between the top squark and the
LSP, ∆m, is fixed at 10, 25, or 80 GeV for the T1ttcc model, and at 175 GeV for the T1t1t model.
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Table 4: Summary of ±1 standard deviation systematic uncertainties for the average signal
efficiency over all mass assumptions in the T1ttcc model (∆m = 25 GeV), and for the total back-
ground count in the signal region, unless indicated otherwise, as determined from simulation.

Systematic effect Signal (%) Background (%)
Jet energy scale +2.2−2.1 +10.9−5.2
Trigger +1.1−3.3 +3.4−5.7
b tagging FULLSIM +2.1−2.3 +3.9−4.0
b tagging FASTSIM +1.2−1.3 —
W tag efficiency FULLSIM +9.0−8.9 +4.6−4.6
W tag efficiency FASTSIM +2.2−2.2 —
W tag mistag efficiency FULLSIM — +1.4−1.4
W anti-tag mistag efficiency FULLSIM (Q region only) — +2.6−2.6
W mass-tag mistag efficiency FULLSIM (W region only) — +2.3−2.3
Electron identification (T and W region only) — +0.2−0.2
Pileup +0.5−0.5 +1.0−1.1
ISR +6.6−6.6 —
Top quark pT — +20.5−14.4
Z(→ νν)+ heavy flavor — +4.0−4.0
PDF 20.7 10.7
All 24.4 22.1

Table 5: Event yields for the predicted backgrounds and for the data in each of the signal bins
in R2 and MR. The uncertainties in the predictions are the combined statistical and systematic
uncertainties obtained using the sampling procedure described in the text.

R2 MR (GeV) tt Multijet W(→ `ν) Other Total Observed

[0.08, 0.12[

[800, 1000[ 47.1± 8.6 21.1± 32.0 6.1± 1.9 6.0± 2.3 80.2± 33.4 75
[1000, 1200[ 15.2± 4.1 4.7± 9.9 1.9± 0.9 2.2± 0.9 24.0± 10.6 24
[1200, 1600[ 7.3± 4.8 1.4± 0.9 1.3± 1.0 1.4± 0.7 11.4± 5.1 10
[1600, 2000[ 0.8± 1.2 0.2± 0.2 0.4± 0.5 0.1± 0.0 1.5± 1.3 0
[2000, 4000] 0.8± 1.1 0.0± 0.1 0.4± 0.6 0.1± 0.1 1.4± 1.3 0

[0.12, 0.16[

[800, 1000[ 15.5± 4.2 2.5± 1.2 1.1± 0.8 2.8± 1.2 21.9± 4.8 34
[1000, 1200[ 3.4± 1.8 0.5± 0.3 1.3± 0.6 1.2± 0.7 6.4± 2.0 8
[1200, 1600[ 2.8± 2.3 0.2± 0.1 0.6± 0.5 0.6± 0.4 4.1± 2.3 3
[1600, 2000[ 0.8± 1.2 0.0± 0.1 0.2± 0.3 0.1± 0.0 1.1± 1.2 0
[2000, 4000] 0.8± 1.1 0.0± 0.0 0.2± 0.4 0.0± 0.0 1.0± 1.1 0

[0.16, 0.24[

[800, 1000[ 9.1± 5.8 0.7± 0.4 1.8± 1.4 2.4± 1.1 14.0± 6.0 16
[1000, 1200[ 2.5± 2.4 0.2± 0.1 0.5± 0.5 1.5± 0.8 4.7± 2.5 4
[1200, 1600[ 0.9± 1.0 0.1± 0.1 1.3± 0.9 0.2± 0.2 2.5± 1.4 2
[1600, 2000[ 0.9± 1.6 0.0± 0.0 0.2± 0.3 0.0± 0.0 1.1± 1.7 1
[2000, 4000] 0.9± 1.3 0.0± 0.0 0.2± 0.3 0.0± 0.0 1.1± 1.3 0

[0.24, 0.5[

[800, 1000[ 7.4± 7.0 0.1± 0.1 0.9± 1.2 2.1± 1.0 10.4± 7.2 8
[1000, 1200[ 1.3± 1.4 0.0± 0.0 0.9± 1.0 0.6± 0.3 2.7± 1.6 0
[1200, 1600[ 0.8± 1.4 0.0± 0.0 0.4± 0.6 0.2± 0.2 1.5± 1.5 1
[1600, 2000[ 0.8± 1.1 0.0± 0.0 0.2± 0.2 0.1± 0.0 1.0± 1.1 0
[2000, 4000] 0.8± 1.2 0.0± 0.0 0.2± 0.3 0.0± 0.0 1.1± 1.2 0

[0.5, 1]

[800, 1000[ 2.0± 1.9 0.0± 0.0 0.4± 0.6 0.5± 0.3 2.9± 2.0 0
[1000, 1200[ 0.9± 1.3 0.0± 0.0 0.2± 0.4 0.1± 0.1 1.2± 1.4 1
[1200, 1600[ 0.9± 1.2 0.0± 0.0 0.2± 0.3 0.1± 0.1 1.2± 1.3 0
[1600, 2000[ 0.8± 1.1 0.0± 0.0 0.2± 0.5 0.0± 0.0 1.0± 1.2 0
[2000, 4000] 0.8± 1.0 0.0± 0.0 0.2± 0.3 0.0± 0.0 1.0± 1.0 0
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Figure 10: Background predictions and observations. The results are shown in bins of MR
for each R2 bin. The hatched band represents the total uncertainty in the background predic-
tion. Overlaid are two signal distributions corresponding to the T1ttcc model with mg̃ = 1 TeV,
mt̃ = 325 GeV and mχ̃0

1
= 300 GeV, and the T1t1t model with mg̃ = 800 GeV, mt̃ = 275 GeV and

mχ̃0
1
= 100 GeV.
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In both models the gluino is assumed to decay 100% of the time into a top squark and a top
quark.

To illustrate the expected signal sensitivity, we show in Fig. 11 the signal efficiencies as a func-
tion of the gluino and neutralino masses, for the T1ttcc model, to which this analysis is particu-
larly sensitive, and for the T1t1t model. Efficiencies of up to 6% in the most boosted regimes are
reached. For the T1ttcc model a drop in efficiency is observed for the region of model param-
eter space with the lowest neutralino mass (mχ̃0

1
= 1 GeV), which can be explained by Lorentz

boosts. For LSP masses higher than the mass of the charm quark, the LSP will assume most
of the momentum. For the bins with the lowest LSP mass, however, the LSP and the charm
quark have about equal mass, so that after the boost they will share the momentum about
equally. This results in a softer Emiss

T spectrum and therefore a lower R2 value, which reduces
the efficiency substantially.

Figure 12 shows the observed 95% confidence level (CL) upper limit on the signal cross section
as a function of the gluino and neutralino masses, obtained using the CLs method described
briefly in Section 8, for the T1t1t model and for the T1ttcc model with ∆m = 10, 25, and 80 GeV.
Additionally, the figure also shows contours corresponding to the observed and expected lower
limits, including their uncertainties, on the gluino and neutralino masses. This analysis has
made significant inroads into the parameter space of the T1ttcc model. Gluinos with mass up to
about 1.1 TeV have been excluded for neutralinos with mass less than about 400 GeV when the
top squark decays to a charm quark and a neutralino and ∆m < 80 GeV. This also means that
top squarks with masses up to about 400 GeV have been excluded for small mass differences
with the LSP, given the existence of a gluino with mass less than about 1.1 TeV. Similarly, for
the T1t1t model, top squarks with a mass up to about 300 GeV have been excluded for the
scenarios with ∆m = 175 GeV and gluino mass less than 700 GeV. The observed limit for this
model is lower than the expected limit because of the small excess in the low MR bins for
0.12 ≤ R2 < 0.16, which are among the most sensitive bins for the T1t1t model.

11 Summary
We have presented a search for new physics in hadronic final states with at least one boosted W
boson and a b-tagged jet using data binned at high values of the razor kinematic variables, MR

and R2. The analysis uses 19.7 fb−1 of 8 TeV proton-proton collision data collected by the CMS
experiment. The SM backgrounds are estimated using control regions in data. Scale factors,
derived from simulations, connect these control regions to the signal region. The observations
are found to be consistent with the SM expectation, as shown in Fig. 10 and Table 5. The results,
which are encapsulated in a binned likelihood, are interpreted in terms of supersymmetric
models describing pair production of heavy gluinos decaying to boosted top quarks. Limits
are set on the gluino and neutralino masses using the CLs criterion on the gluino-neutralino
mass plane, as shown in Fig. 12. Assuming that the gluino always decays into a top squark
and a top quark, this analysis excludes gluino masses up to 1.1 TeV for top squarks with mass
up to about 450 GeV that decay exclusively to a charm quark and a neutralino. In this scenario,
the mass difference considered between the top squark and neutralino is less than 80 GeV. This
analysis also excludes gluino masses up to 700 GeV when the top squark decays solely to a top
quark and a neutralino, and the mass difference between the top squark and the neutralino is
around the top quark mass.
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Figure 11: Signal efficiency for the T1ttcc and T1t1t simplified model spectra, as a function
of the gluino and neutralino masses. Three mass splittings between top squark and LSP are
considered for the T1ttcc model: 10, 25, and 80 GeV, shown on the top left, top right, and
bottom left, respectively. The efficiency for the T1t1t model with a mass splitting of 175 GeV is
shown on the bottom right.
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Figure 12: Observed upper limit (CLs method, 95% CL) on the signal cross section as a function
of the gluino and neutralino masses for the T1ttcc model with ∆m = 10, 25, and 80 GeV (top
left, top right, bottom left) and for the T1t1t model with ∆m = 175 GeV (bottom right). Also
shown are the contours corresponding to the observed and expected lower limits, including
their uncertainties, on the gluino and neutralino masses.



24 11 Summary

Acknowledgements
We congratulate our colleagues in the CERN accelerator departments for the excellent perfor-
mance of the LHC and thank the technical and administrative staffs at CERN and at other
CMS institutes for their contributions to the success of the CMS effort. In addition, we grate-
fully acknowledge the computing centres and personnel of the Worldwide LHC Computing
Grid for delivering so effectively the computing infrastructure essential to our analyses. Fi-
nally, we acknowledge the enduring support for the construction and operation of the LHC
and the CMS detector provided by the following funding agencies: the Austrian Federal Min-
istry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de
la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Fund-
ing Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and
Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and Na-
tional Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS);
the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation;
the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Esto-
nian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund,
Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki
Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Partic-
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